
2 CONTROLLER DESIGN

The control design problem can be stated as follows: Given the system

ẋ = A︸︷︷︸
n × n

x︸︷︷︸
n × 1

+ B︸︷︷︸
n × 1

u︸︷︷︸
1 × 1

,

how do we find u such that x behaves nicely? We consider for now single input systems (u
is scalar and B is a vector), the multiple input case is studied later. We are particularly
interested in closed loop control, where u is a function of the state x. The case where u is
an explicit function of time only and not x is called open loop control and is studied under
system dynamics. Since we are using the state x to determine the control effort u(x) we call
it feedback control.

2.1 Pole Placement

The simplest case of feedback control u(x) is when u is linear in x,

u = − K︸︷︷︸
1 × n

x ,

where K is the feedback gain vector to be determined. Substituting u = −Kx into ẋ =
Ax + Bu we get

ẋ = Ax − BKx , or

ẋ = (A − BK)x .

The actual characteristic equation of this closed loop system is given by

det [A − BK − sI] = 0 .

We can now pick K such that the actual characteristic equation assumes any desired set
of eigenvalues. If we choose the desired locations of the closed loop poles at s = si for
i = 1, . . . , n, the desired characteristic equation is

(s − s1)(s − s2) . . . (s − sn) = 0 .

The required values of K are obtained then by matching coefficients in the two polynomials
of the actual and desired characteristic equations.

Consider the example:

A =

[
1 −5
−5 1

]
, B =

[
1
0

]
.

The open loop eigenvalues are

det[sI − A] =

∣∣∣∣∣ s − 1 5
5 s − 1

]
= 0 =⇒ (s − 1)2 − 5 = 0 =⇒ (s − 6)(s + 4) = 0 ,
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so we have an unstable system with no control. If the pair (A, B) is controllable we are guar-
anteed that we can pick the elements of K to produce an arbitrary characteristic equation.
In this case we have

AB =

[
1
−5

]
, C =

[
1 1
0 −5

]
, det C = −5 �= 0 ,

so the system is controllable. Now suppose we want closed loop eigenvalues at −10± 10i so
that we get a damping ratio ζ = 0.707. The desired closed loop characteristic equation is

(s + 10 − 10i)(s + 10 + 10i) = s2 + 20s + 200 = 0 .

Form the matrix

A − BK =

[
1 −5
−5 1

]
−

[
1
0

] [
k1 k2

]
=

[
1 − k1 −5 − k2

−5 1

]
,

and the actual closed loop characteristic equation is

det[A − BK − sI] =

∣∣∣∣∣ 1 − k1 − s −5 − k2

−5 1 − s

∣∣∣∣∣ = 0 , or

1 − k1 − s − s + k1s + s2 − 25 − 5k2 = 0 , or

s2 + (k1 − 2)s + (−k1 − 5k2 − 24) = 0 ,

requiring

−2 − k1 = 20 ,

−k1 − 5k2 − 24 = 200 .

Solving this we get

k1 = 22 ,

k2 = −246

5
,

and the control law is

u = −k1x1 − k2x2 = −22x1 +
246

5
x2 .

Note that these gains may be impossible or impractical to build for this system. This would
require some compromise in the specification which led to the desired closed loop eigenvalues.
In general, the above approach yields a system of n linear equations to be solved for the n
elements of K provided (A, B) is controllable. This method is known as pole placement.

Example: Consider the submarine equations

θ̇ = q ,

ẇ = a13zGBθ + a11Uw + a12Uq + b1U
2δ ,

q̇ = a23zGBθ + a21Uw + a22Uq + b2U
2δ
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Let the control law be
δ = −k1θ − k2w − k3q .

Substituting into the equations we get the closed loop system

θ̇ = q ,

ẇ = (a13zGB − b1U
2k1)θ + (a11U − b1U

2k2)w + (a12U − b1U
2k3)q ,

q̇ = (a23zGB − b2U
2k1)θ + (a21U − b2U

2k2)w + (a22U − b2U
2k3)q ,

or, in matrix form,
 θ̇

ẇ
q̇


 =


 0 0 1

a13zGB − b1U
2k1 a11U − b1U

2k2 a12U − b1U
2k3

a23zGB − b2U
2k1 a21U − b2U

2k2 a22U − b2U
2k3


 .

The characteristic equation of the closed loop system is

det

∣∣∣∣∣∣∣
0 − s 0 1

a13zGB − b1U
2k1 a11U − b1U

2k2 − s a12U − b1U
2k3

a23zGB − b2U
2k1 a21U − b2U

2k2 a22U − b2U
2k3 − s

∣∣∣∣∣∣∣ = 0 ,

and after some algebra this reduces to

s3 + (−D′
1 + A2k2 + A3k3)s

2 + (−B1k1 − B2k2 − B3k3 − D′
2)s

+(−C1k1 − C2k2 − D′
3) = 0 ,

where we have denoted

A2 = b1U
2 , A3 = −B1 = b2U

2 ,

B2 = (b1a22 − b2a12)U
3 , B3 = C1 = (b2a11 − b1a21)U

3 ,

C2 = (a23b1 − a13b2)U
2zGB , D′

1 = (a11 + a22)U ,

D′
2 = a23zGB + (a12a21 − a11a22)U

2 , D′
3 = (a13a21 − a11a23)zGBU .

Now assume that the we wish to place the closed loop poles at −p1, −p2, −p3. This means
that the desired characteristic equation is

(s + p1)(s + p2)(s + p3) = 0 , or

s3 + α1s
2 + α2s + α3 = 0 ,

with

α1 = p1 + p2 + p3 ,

α2 = p1p2 + p2p3 + p3p1 ,

α3 = p1p2p3 .

Then, the control gains can be computed by equating coefficients of the actual and the
desired characteristic equations

A2k2 + A3k3 = −α1 − D′
1 ,

B1k1 + B2k2 + B3k3 = α2 + D′
2 ,

C1k1 + C2k2 = α3 + D′
3 .
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This method of equating coefficients is feasible only for small systems and it always produces
a linear system in the unknown gains ki.

The above approach can be simplified if the system is written in its control canonical
form

ẋ′ = A′x′ + B′u , y = C ′x′ ,

and we are seeking a control law of the form

u = −K ′x′ .

As an example say the open loop characteristic equation is

s4 + a3s
3 + a2s

2 + a1s + a0 = 0 ,

and the state space form of the system is




ẋ′
1

ẋ′
2

ẋ′
3

ẋ′
4


 =




0 1 0 0
0 0 1 0
0 0 0 1

−a0 −a1 −a2 −a3







x′
1

x′
2

x′
3

x′
4


 +




0
0
0
1


 u ,

and

y =
[

b0 b1 b2 b3

]



x′
1

x′
2

x′
3

x′
4


 ,

with the control law

u = −
[

k′
1 k′

2 k′
3 k′

4

]



x′
1

x′
2

x′
3

x′
4


 .

The transfer function is

Y (s)

U(s)
=

b3s
3 + b2s

2 + b1s + b0

s4 + a3s3 + a2s2 + a1s + a0
.

Observe that no algebra is needed here, if we have the transfer function we can write the
control canonical form directly.

We can select now our desired closed loop characteristic equation

s4 + α3s
3 + α2s

2 + α1s + α0 .

Then

A − BK ′ =




0 1 0 0
0 0 1 0
0 0 0 1

−a0 − k′
1 −a1 − k′

2 −a2 − k′
3 −a3 − k′

4


 ,
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with closed loop characteristic equation

s4 + (a3 + k′
4)s

3 + (a2 + k′
3)s

2 + (a1 + k′
2)s + (a0 + k′

1) = 0 .

Again, since we are working with a control canonical form, no algebra has been necessary so
far. We can now solve for the gains directly without solving a system of linear equations

k′
1 = −a0 + α0 ,

k′
2 = −a1 + α1 ,

k′
3 = −a2 + α2 ,

k′
4 = −a3 + α3 ,

and the control law is

u = −k′
1x

′
1 − k′

2x
′
2 − k′

3x
′
3 − k′

4x
′
4 ,

= −(−a0 + α0)x
′
1 − (−a1 + α1)x

′
2 − (−a2 + α2)x

′
3 − (−a3 + α3)x

′
4 .

Draw a block diagram of the system before and after feedback control; do you see what
happens?

To summarize, if we have a system

ẋ′ = Ax′ + Bu ,

in the control canonical form, we can introduce a feedback control law

u = −K ′x′ ,

with feedback gains
K ′ = −a + α ,

where

a = coefficients of original characteristic equation ,

α = coefficients of desired characteristic equation .

If the system is not in the control canonical form we have to transform it. Suppose that
the original state x is transformed into x′ through the transformation

x′ = Tx ,

and
ẋ = Ax + Bu ,

becomes
ẋ′ = TAT−1x′ + TBu .

For the transformed system, which is in the control canonical form,

u = −K ′x′ ,
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where
K ′ = −a′ + α = −a + α ,

since the characteristic equation is invariant under a change of state variables. The control
law is

u = −K ′x′ ,

= −K ′Tx ,

= −Kx ,

where
K︸︷︷︸
1×n

= K ′︸︷︷︸
1×n

T︸︷︷︸
n×n

,

is the gain in the original system. This can also be written as

KT︸︷︷︸
n×1

= T T︸︷︷︸
transpose

(−a + α)︸ ︷︷ ︸
n×n

.

We only need to find the transformation matrix T which will transform any system into
its control canonical form. The desired matrix T is the product of two matrices

T = V U ,

where U is the inverse of the controllability matrix C
U = C−1 .

Notice that if the system is uncontrollable, U does not exist. Matrix V is given by

V = W−1 ,

where

W =




1 an−1 an−2 · · · a1

0 1 an−1 · · · a2

0 0 1 · · · a3

· · · · ·
· · · · ·
· · · · ·
0 0 0 · · · 1




;

the first row is formed by the coefficients of the characteristic polynomial of A

det[A − sI] = sn + an−1s
n−1 + · · · + a1s + a0 = 0 ,

and the other rows are pushed left by one at a time. Therefore, the desired control law is

KT =
[
(CW )T

]−1
(−a + α) .

Now that we have a formula for the gains of a controllable single input system that will
place the poles at any desired location, several questions arise:
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1. If the closed loop poles can be placed anywhere, where should they be placed?

2. How can the technique be extended to multiple input systems?

3. What if not all states are available for feedback and we have to use output measure-
ments only?

4. What do we do if we have external disturbances and we want to track a reference
input?

5. How do we handle effects of sensor noise?

6. Can we optimize the performance of a control system?

The above questions are the subject of the remaining of these notes.

2.2 Pole Location Selection

For a second order system we may have some transient response specifications, such as rise
time, percent overshoot, or settling time. These result in an allowable region in the s–plane
from which we can easily get the desired locations of the poles. For higher order systems we
can employ the concept of dominant roots, select two roots as dominant which means that
we want to place the remaining roots more negative so that the transient response is not
affected significantly. In selecting poles for a physical system we need to look at the physics;
we can not specify poles that are too negative, for example. This would demand a very small
time constant for the control system and the physical system may not be able to react that
fast.

The control law u = −Kx implies that for a given state x the larger the gain, the larger
the control input. In practice, however, there are limits on u: actuator size and saturation.
Occasional control saturation is not serious and may be even desirable; a system which never
saturates is probably overdesigned.

Example: Control design by pole placement is very easy using MATLAB, the appropriate
command is place which accepts as inputs the A, B matrices and a vector of the desired
closed loop poles, and returns the gain vector K. For example, consider the submarine
equations


 θ̇

ẇ
q̇


 =


 0 0 1

0.0135 −0.3220 −0.7102
−0.0360 0.1260 −0.7395




︸ ︷︷ ︸
A


 θ

w
q


 +


 0

0.0322
−0.0857




︸ ︷︷ ︸
B

δ .

Say we want to design a control law to stabilize the submarine to a level flight path at θ = 0.
We want to be able to return to level after an initial small disturbance in θ within the time it
takes to travel one ship length, this is reasonable. Since the boat is about 17 feet long and it
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travels at 5 ft/sec, that time is about 3.5 seconds; so we want the control law to have a time
constant of 3 seconds. This means we want to place the closed loop poles at approximately
−0.3. Using place we specify poles at −0.3, −0.31, −0.32 (place does not like poles that
are exactly the same) and we find the gains in the control law

δ = −(−0.8451θ − 1.4733w + 0.9807q) .

Using a simulation program we plot the response starting from 30 degrees positive (bow up)
pitch angle. We also set a limit in the dive plane angle between ±0.4 radians. We can see
from the results that initially the planes saturate at the upper limit and they come off as
θ approaches zero. For comparison, we show the response with no control (planes fixed at
zero). If we specify more negative poles, at −0.9, −0.91, −0.92, the control law becomes

δ = −(−31.6147θ − 1.2581w − 24.6634q) .

Observe how unrealistically high these gains are: for a unit change in the pitch angle θ our
controller demands 32 degrees of plane action! The response is also shown in the figure;
there is more plane activity than in the previous case. However, since we hit the saturation
limit, the response is not any faster and it overshoots the desired value. If we specify less
negative poles at −0.1, −0.11, −0.12, we end up with a control law

δ = −(0.3640θ − 1.2581w + 8.0657q) .

This is a very soft control law, it takes considerably longer for θ to reach zero and there is
very limited plane activity.

From the above results, that are plotted in Figures 14 and 15, we can see that:

• Poles that are specified too negative will not necessarily result in faster response for a
physical system; we may reach the hardware limitations of the system.

• Poles that are specified too negative will result in a high gain tight control law which
will exhibit continuous control action; the system will over–respond to everything,
including measurement noise.

• Poles that are specified not negative enough will result in soft response with a very
quite control system that hardly works at all.

• Proper pole selection can be achieved by knowing the physics of the system we are
trying to control, and by a trial–and–error simulation process.

The effect of control system gain on pole locations can be appreciated by considering the
formula

KT =
[
(CW )T

]−1
(−a + α) .

The gains are proportional to the amounts that the poles are to be moved: the less the poles
are moved the smaller the gain matrix and therefore the control effort. It is also seen that
the control system gains are inversely proportional to the controllability test matrix C. The
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Figure 1: Pitch angle versus time for different closed loop poles
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Figure 2: Control effort for different closed loop poles
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Figure 3: Butterworth pole configurations

less controllable the system, the larger the gains that are needed to make a change in the
system poles.

Some broad guidelines for pole selection are:

• Select a bandwidth high enough to achieve desired speed of response.

• Keep the bandwidth low enough to avoid exciting unmodeled high frequency effects
and undesired response to noise.

• Place the poles at approximately uniform distances from the origin for efficient use of
the control effort.

We can also use standard characteristic polynomials such as minimizing the ITAE crite-
rion, Bessel transfer functions, or Butterworth pole configurations. A typical sketch of the
Butterworth poles is shown in Figure 16.

The closed loop poles tend to radiate out from the origin along the spokes of a wheel in
the left half plane as given by the roots of(

s

ω0

)2k

= (−1)k+1 ,

where k is the number of roots in the left half plane and ω0 the natural frequency. In the
absence of any other consideration, a Butterworth configuration is often suitable. Note,
however, that as the order of the system k becomes high, one pair of poles comes very close
to the imaginary axis. It might be desirable then to move these poles further into the left
half plane.

Optimal control strategies can also be used to optimize some performance index. One
common choice here is

min J =
∫ T

0
(xT Qx + uT Ru) dt ,

where

Q = weighting matrix of the error x ,

R = weighting matrix of the control effort u .
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This is the Linear Quadratic Regulator problem which is studied later in these notes.

2.3 Multiple Input Systems

If the dynamic system under consideration

ẋ = Ax + Bu ,

has more than one inputs, that is B has more than one columns, then the gain matrix K in
the control law

u = −Kx ,

has more than one rows. Since each row of K furnishes n adjustable gains, it is clear than
in a controllable system there will be more gains available than needed to place all of the
closed loop poles. If we have m inputs, then the equation

det |A − BK| = specified characteristic polynomial

gives n equations with n × m unknowns. More than one solutions exist in general. This
gives the designer more flexibility: it is possible to specify all the closed loop poles and still
be able to satisfy other requirements. There are several possibilities here, some of them are
briefly discussed below.

1. We can make one control proportional (or related) to the other. For example if we
have a two input system

ẋ = Ax +
[

b1 b2

] [
u1

u2

]
,

we can choose
u2 = λu1 ,

with λ some selected constant of proportionality, and the system becomes

ẋ = Ax +
[

b1 + λb2

] [
u1

u2

]
,

which is single input. The underlying physics should be the guidance for selection in
this method. For example, say that our submarine is equipped with two inputs for
depth control: independent stern and bow planes, call them δs and δb. If rapid depth
change is what we want at a regular cruising speed then it makes sense to assume that
δb = −δs. This deflects the bow planes differentially than stern planes and produces
maximum control authority through maximizing the vehicle pitching moment. If on
the other hand, the vehicle is equipped with vertical stern and bow thrusters and is
operating near hover, it is natural to command the same instead of opposite values for
the two control inputs in order to achieve depth control.
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2. Another possible method of selecting a particular structure for the gain matrix is to
make each control variable depend on a different group of state variables that are phys-
ically more closely related to that control variable than to the other control variables.
For example, suppose that our submarine is equipped with stern planes and sail planes
at about amidships. Then is makes sense to use the stern planes to directly control
pitch angle and the sail planes for direct depth control. Formally, what we are doing in
this case is to specify not just the eigenvalues of the closed loop matrix but also (some
of) its eigenvectors. This achieves a more precise shaping of the response.

3. Another possibility might be to set some of the gains to zero. For example, it is possible
(sometimes) to place the closed loop poles at the desired locations with a gain matrix
which has a column of zeros. This means that the state variable corresponding to that
column is not needed in the generation of any of the control signals in the vector u, and
hence there is no need to measure (or estimate) that state variable. This simplifies the
resulting control system structure. If all the state variables, except those corresponding
to columns of zeros in the gain matrix, are accessible for measurement then there is no
need for an observer to estimate the state variables that cannot be measured. A very
simple and robust control system is the result.

Hand calculation of the system of equations to be solved for the gains is possible for the
multiple input case just like the single input. The only difference here is that unlike the
single input where we always end up with a system of linear simultaneous equations in ki,
for multiple inputs it is possible to come up with a nonlinear system for kij.

13


